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we note that it will be greater the smaller the value of H (i.e., the smaller the value of 

6). It can be shown by analysing (2.5) and (2.6) (with T,,* zO,o,*=l) that 

gz --f 0, s&J, (p0dt-t --hm,fi,Q-', p < 1, b + 0 

Substituting into (2.4), we obtain as b-+0 

4 cc ff) = PoNd (h + 2p)(h + p)-', r < R 

Thus, for any H (i.e., for any b) 

I uz k WI < 2 (1 - y)I Pa I hi%, y = I/& (h + p)-l (5.2), 

For numerical data /6/ Ap = -40 MPa, h = 600m, R = IO&m, PO = 2x 10m3 (MPa).r, fi = 

1.5~10-~ (MPa) -1, m, = 0.05,~ = 0.34 we obtain p0 = -34.3MPa, from which 
according to (5.2), 

I u, (r; H)I < 2.74 m 
which agrees with the approximate estimate obtained in /7/. 
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A GEOMETRICAL METHOD OF SOLVING THE PROBLEM OF MAXIMIZING THE NORM OF THE 

STATE VECTOR OF THE SYSTEM IN A FINITE CONTROL INTERVAL* 

A.M. TKACHEV 

The problem of constructing controls which maximize the norm of the 
state vector of the system at the right-hand end of a fixed control 
interval is considered. A numerical method of determining the maxima is 
proposed, based on a geometrical approach. Local convergence of the 
algorithm is proved and the direction of the search for the global 
maximum is discussed. Results of numerical modelling are given. 

The problem of maximizing the convex function J on a convex manifold of attainability 
discussed here, cannot be solved using traditional methods (for example, the method of minimum 
discrepancy and its modifications /l, 2/j, since in the case of an equivalent minimization 
the functional J is not convex. This leads, in particular, to violation of the theorems of 

uniqueness of optimal control. Indeed (Fig.l), mo're than one point may exist belonging to 
the convex manifold of attainability I;(T) at the maximum distance from the origin of 
coordinates. At the same time, there exists a unique point belonging to K(T) whose dis- 
tance from the origin of coordinates is a minimum. 
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1. Formutation of the problem. It is required to find the control u(t) which, in a 

fixed interval (O,T), transfers to the linear system 

t' = A (t)z + B (t)u, z E En, u E R, c Em (1.1) 

(Q, is the boundary set) from the known initial state z(O)= 10 to the point z(T) at the right- 
hand end of the trajectory, at the maximum distance from the origin of coordinates 0. 

At least one such point exists. Indeed, the set K(T) is bounded (and also compact), 
i.e., it is completely contained within some sphere. Reducing the radius of this sphere we 

finally arrive at a sphere of radius R* which has at least one common point with the boundary 
aK of the domain of attainability (Fig.1). This clearly shows that the optimal trajectories, 
i.e. the trajectories maximizing the functional J = l/.z(T)I(, terminate at the points on aK, 

and this means that the optimal control should be sought amongst the extremal ones. All this 
implies that the maximizing control is not unique. We shall assume in this paper that the 
problem is solved if at least one such control has been found. 

2. Locat ma&mum. Before anything else, we note that the point x' of contact K between 
the supporting hyperplane I and normal vector g is determined by the solution of the problem 
.z'= argmax(r,g) (here and henceforth the maximum is taken over all ZE K(T)). 

Indeed, let us consider the scalar product 

T 

(2.8) =g"l'(V~, + 1 g"D (T, t)B(t)u (t)dt 
0 

(2.1) 

where @(T,r) is the basic matrix solution of the homogeneous system. If P, is a hypercube, 
i.e. 1 U, (t) 1 < i (i = 1, 2, ., m). then the extremal control maximizing (2.1) will havethe form 

u (l) = %a WQ (T, W (Ql (2.2) 

It is clear that the control generates the point x', since it is the vector drawn to 
the point of contact between the hyperplane and the boundary of the domain of attainability 
that has a maximum projection on the axis of the unit vector g (Fig.1). 

The proposed algorithm is as follows: 1) the vector $ is chosen arbitrarily (the super- 
script indicates the number of the iteration), 2) the vector zi = W&,X (z, g'-lj is constructed, 
3) the vector g'= z*!Js'O is constructed and step 2 of the algorithm is repeated, 4) the 
algorithm will terminate when the inequality I[z*II-~~C~II(~<E, where E is the siven error, 
is satisfied. Step 2 is carried out by calculating ~ u(t) 
by integrating system (1.1) with this control. 

with help of formula ?2.2), followed 

Fig.1 

Fig.3 0’ 19.4 

Fig.2 

Fig.5 
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The geometrical content of the method is obvious. We construct for the vector $-I 

!Fig.2) a normal hyperplane 1‘~I , and its point of contact with aK yields the vector zi 
for the next iteration. A rigorous proof of the algorithm is given below. 

Lennna 1. The process described above generates a sequence of vectors (~'1 which converges 
with respect to the norm. 

We shall first show that 

II 2 II >lP’ II. (2,“) d 

Indeed, 

z’ -: argmas (s. :“-I) argmax (I, xi-‘; 11 xi-1 11) argn,ax (LT. k-i I (2 $1 
Let us consider the scalar product (zi,zi-l). If we take zi == .+-1, then the product will 

yield ,)I zi-' /Ia = C,. Let us now assume that 11 ziII < //zi-’ 11. Then (.rl, .r'-')~. Co by the definition of 

the scalar product, and this means that x1 cannot satisfy condition (2.4). This is a con- 
tradiction, thus proving inequality (2.3). Having noted now that the quantity II 2 I/ has an 
upper limit by virtue of the boundedness of K CT), we arrive at the proof of the lemma. 

We shall call the sequence constructed in this manner the A-sequence. 
It is clear (Fig.2) that the algorithm converges to the point x* at which the tangent 

hyperplane is normal to the vector P. Additional iterations from the point I* give the same 
point P. It would be natural to assume that Z* is indeed a local maximum. In fact, this is 
not always true. An example could be constructed (Fig.31 in which the point JP to which 
the algorithm converges "from the right" contains, in any of its F-neighbourhoods, points 
for which Ilr/j>;l.rP/j represents a part of tiK) "to the left" of the point sp. In this case zP 
is an unstable limit point of the algorithm (we shall call it the slippage point), since any 
point "to the left" of JP and as close to z.9 as desired, taken as the consecutive iteration 

step, will take the algorithm away from ZP. It is clear that in order for the point CP to be 
indeed a local maximum, it is necessary that the algorithm converge to .z+ from any point to 
the left. 

Theorem 1. The point X* will be a point of local maximum if and only if there exists a 
E-neighbourhood S, (z*i) of the point I* such that the algorithm will converge to r* from any 
point of the set Q,= !K r,S,(z*) taken as the initial point. 

We will first assume that X* is a local maximum, i.e. that there exists a F-neighbour- 
hood of Z* such, that 

We will choose an arbitrary point r=Qe and construct from it an A-sequence converging 
to some point .cPI. If .G* 3*, then XP will be a slippage point and llzpl)/</]z* 11. Let us 
take c,< t: so that xpl d Q,, and again construct the A-sequence, and then continue this 
process. Then, either we shall obtain ipi =- I* at the i-th step and the theorem will be 
proved directly from P = F,. or the following infinite sequence converging to ,c* will be 
constructed: 

Here the equalities correspond to the situation in which Q, represents a part of the 
sphere s,,.~*,) (O), and this is impossible by virtue of inequality (2.5). The infinite sequence 
of strict inequalities is also impossible here, since its existence would mean, by virtue of 
the fact that e is infinitely small, that the distance from the point 0 to the slippage 
points could be as small as desired, i.e. the surface Qe will lie as near to that sphere as 
desired. 

In order to prove the assertion in the other direction we take any point .I E Qp and 
construct for it the A-sequence (zi). By virtue of the inequality (2.3) and the fact that 
II 3 L I/ - 11 .c* 11, we obtain at once I/ I 1) < /I 5* II3 i.e. I* is a local maximum. 

We note that the theorem just proved does not provide an answer to whether we have an 
extremum at the point .S, or whether it represents a slippage point, since it is impossible 
to inspect all points of the e-neighbourhood for the "withdrawal" from 1.p. However, the next 
section will show that there is no need to distinguish between the local maximum and a slippage 
point. 

3. Clobcil maximum. We have already mentionedthatthe maximizing control is not unique 
(Fig-l). Moreover, we can construct a convex curve (the angular curve in Fig.41 containing 
as many local extrema as desired, to every one of which the algorithm will converge by a 
suitable choice of the initial vector ~0 It is clear that the attempt to construct an algorithm 
for finding all maxima (and the subsequent choice of the global maximum) will be untenable. 
A more acceptable scheme would be that of organizing a passage from one local maximum to the 
next with a larger value of the functional. However, here we again cannot guarantee any 
progress towards a global extremum since the mutual positioning of the point 0 and the set 

A-(T) !depending, in particular, on the initial state of the system .I,,\, is arbitrary. There- 
fore, the author used the following heuristic algorithm: first, we choose an arbitrary unit 
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vector go and use the Gram-Schmidt method to construct the system of 12 - 1 orthonormed vectors. 
Further, we add to these n orthogonal vectors the same number of vectors of opposite direction 
and then use all 2n vectors as initial vectors (the plane case is illustrated in Fig.5). In 
numerical experiments carried out for n y 2 we found no cases in which a set of local maxima 
obtained in this manner did not contain a global maximum. The algorithm converges to a local 
maximum after 2-4 iterations irrespective of the dimensions of the system (up to n--B in 
the experiments), and this is at least twice as fast as in the case of similar methods /2/ of 
searching for the minimum of a functional. 

In conclusion, we note that the proposed algorithm can be applied to non-linear systems 
including the case with a non-convex domain of attainability. 
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ON THE CONSTRUCTION OF GENERAL SOLUTIONS OF THE THEORY OF THE 

ELASTICITY OF INHOMOGENEOUS SOLIDS* 

A.E. PURO 

The elasticity theory equations are decomposed in the case when the shear modulus is a 
function of one Cartesian coordinate while Poisson's ratio is a function of three 
coordinates. Such a separation is possible for transverse isotropy when both shear 
coefficients depend just on the coordinates of the normal isotropy plane. It is assumed that 
the mass forces are potential. 

Decomposition of the elasticity theory equations of an isotropic body by extraction of 
the normal rotation deformation /l/ was later extended to the case of a transversely- 
isotropic body /2/. Such a separation was performed for an isotropic body /3/ and for a 
transversely-isotropic body /4/* (*See also Puro, A.E., Some Exact Particular Solutions of 
the Statics Equations of an Inhomogeneous Medium, Candidate Dissertation, Tallinn, 1975.) for 
a one-dimensional inhomogeneity when the elasticity coefficients depend on one Cartesian 
coordinate. 

1. A transversely-isotropic body is referred to a rectangular Cartesian system of 
coordinates and the s-axis is perpendicular to the plane of body isotropy. 

We consider both shear coefficients c~= c-~.(c~~~c~~)/~= G in the generalized Hooke's law 

%x = Cll%I. + Cmeyy + C&z*, Ql = (Cl1 - C1*)Erar 

% = Cl8% + Cheyy + cl*% 0.X, = 2C44%: 
o,, = (J = cm (erx + erg,) + CSIL%2~ oyz = 2C&yr 

differential functions of just the z coordinate while the remaining elasticity coefficients 
cik are functions of three coordinates. It is also assumed that the mass force vector M and 
the displacement vector u are decomposed into potential and solenoidal components in the plane 
of isotropy and expressed, respectively, in terms of the potentials 
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